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Abstract
A method is suggested to obtain the quasi exact solution of the Rabi
Hamiltonian. It is conceptually simple and can be easily extended to
other systems. The analytical expressions are obtained for eigenstates and
eigenvalues in terms of orthogonal polynomials. It is also demonstrated that
the Rabi system, in a particular case, coincides with the quasi exactly solvable
Pöschl–Teller potential.

PACS numbers: 03.65.Ge, 02.30.Gp

1. Introduction

Considerable attention has been paid over the years to the solution of the Rabi and Jahn–Teller
(JT) Hamiltonians [1–3]. The E ⊗ ε JT problems have been solved by Judd when certain
relations between the parameters of the Hamiltonian were invoked [2]. Such solutions are
known as Juddian isolated exact solutions. The problem has been studied in the Bargmann–
Fock space by Reik et al [4] and its canonical form has been obtained by Szopa et al [5]. It
has been proved [6, 7] that the Rabi Hamiltonians, i.e. E ⊗ β JT and E ⊗ ε JT systems, are
mathematically identical. Moreover, it is possible to generalize the method for a wider class
of Jahn–Teller systems.

In quantum mechanics there exist potentials for which it is possible to find a finite number
of exact eigenvalues and associated eigenfunctions in the closed form. These systems are said
to be quasi exactly solvable (QES). The connection of quasi exact solvability with conformal
quantum field theories in solid-state physics has been described recently [8]. In this paper we
take a new look at the solution of the Rabi Hamiltonian through the method of quasi exact
solvability.

One of the methods for the calculation of eigenstates and eigenvalues of the QES
potentials is the use of orthogonal polynomials. Bender and Dunne showed [9] that there
is a correspondence between the QES models in quantum mechanics and the set of orthogonal
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polynomials Pm(E), which are polynomials in energy E. This paper is devoted to describing
the eigenstates and eigenvalues of the Rabi Hamiltonian by using the Bender and Dunne
method, in the framework of quasi exact solvability.

The paper is organized as follows. In section 2 we transform the Rabi Hamiltonian into
the quasi exactly solvable differential equation form and discuss the determination of the
condition for quasi exact solvability. In section 3 we present a solution for the eigenstates and
eigenvalues of the Rabi Hamiltonian. The relation between Rabi system and quasi exactly
solvable Pöschl–Teller system is also discussed in this section. In section 4 we compare our
results with those obtained by other methods. In section 5 finally we comment on the validity
of our method and suggest the possible extensions of the problem.

2. Quasi exact form of the Rabi Hamiltonian

In the cyclooctatetraene molecular ion, which is a particular case of molecules having a
fourfold axis symmetry, in the resonant excitation of double molecules or dimers, a doubly
degenerate state becomes coupled by a single mode. This system is known as the E ⊗ β

Jahn–Teller system which helps us to understand the more complex cases of the Jahn–Teller
effect. The E × β Jahn–Teller system coupled to a system executing harmonic oscillations
whose energy eigenvalues differ by 2µ is characterized by the Rabi Hamiltonian [6]:

H = a+a + κσ3(a
+ + a) + µ(σ + + σ−) (1)

where σ± = 1
2 (σ1 ± iσ2) and σ1, σ2, σ3 are Pauli matrices and the parameter κ is a linear

coupling constant. Hamiltonian (1) can be expressed as a differential equation in the
Bargmann–Fock space by using the realizations of the bosonic operators,

a+ = z a = d

dz
. (2)

In this formulation, the Schrödinger equation consists of two independent sets of linear
first-order differential equations. Substituting (2) into (1) we obtain a system of two linear
differential equations for the functions ψ1(z) and ψ2(z):

(z + κ)
dψ1(z)

dz
+ (κz− E)ψ1(z) + µψ2(z) = 0 (3a)

(z− κ)
dψ2(z)

dz
− (κz + E)ψ2(z) + µψ1(z) = 0 (3b)

where E is the eigenvalue of the Rabi Hamiltonian. We eliminate ψ2(x) between the two
equations, and substituting

z = κ(2x − 1) ψ1(x) = e−2κ2x�(x) (4)

we obtain a second-order differential equation

x(1 − x)
d2�(x)

dx2
+ [κ2(4x2 − 2x − 1) + E(2x − 1)− x + 1]

d�(x)
dx

+ [κ4(−4x + 3)− E2 + 2Eκ2(−2x + 1) + µ2] �(x) = 0. (5)

In order to understand quasi exact solvability of (5) the standard way is to demonstrate that
the Hamiltonian can be expressed in terms of generators of the Lie algebra. Let us consider
the algebra su(1, 1) expressed in the following form:

J− = d

dx
J0 = x

d

dx
− j J+ = x2 d

dx
− 2jx. (6)



Quasi exact solution of the Rabi Hamiltonian 9427

The generators obey the commutation relation

[J+, J−] = −2J0 [J0, J±] = ±J±. (7)

If 2j is a positive integer, the algebra possesses (2j + 1)-dimensional subspace

�(x) = {1, x, x2, . . . , x2j }. (8)

We first introduce the following linear and bilinear combination of the algebraic operators:

T = −J+J− + J−J0 − jJ− + 4κ2J+ − (4κ2 − 2j + 1)J0 + µ2 (9)

for which one can define the spectral problem

T�(x) = λ�(x) (10)

where λ is a spectral parameter. The algebraic structure (9) is quasi exactly solvable [11]. The
insertion of (6) into (9) leads to the following differential equation:

x(1 − x)
d2�(x)

dx2
+ [2j (2x − 1) + (x − 1)(4κ2x − 1)]

d�(x)
dx

+ [µ2 + j (1 − 2j) + 4κ2(1 − 2x)− λ] �(x) = 0. (11)

Equations (5) and (11) are identical under the conditions

E = 2j − κ2 λ = j (1 + 2j − 4κ2). (12)

Thus we have shown that the Rabi Hamiltonian is QES. There are various techniques to solve
(11). Here we obtain its solution with the theory of orthogonal polynomials.

3. Determination of eigenvalues and eigenfunction of the Rabi Hamiltonian

In this section we seek a solution for (11) to obtain eigenfunction and eigenvalues of the QES.
Since the function �(x) = {1, x, x2, . . . , x2j } forms a basis function for su(1, 1) algebra, we
search for a solution of (11) by substituting the polynomial of degree 2j ,

�(x) =
2j∑
m=0

amx
m. (13)

The wavefunction is itself the generating function of the energy polynomials. The eigenvalues
are then produced just by the roots of such polynomials. Therefore (13) can be written in the
form

�(x) =
2j∑
m=0

amPm(κ)x
m. (14)

Substituting (14) in (11) and carrying out a straightforward calculation, we obtain the
expression

�(x) = 1 +
4P2j−1(κ)(κx)

2j

µ2
+

2j−1∑
m=1

Pm(κ)(x)
m. (15)

Here Pm(κ) satisfies the recurrence relation

(m + 1)(m + 1 − 2j)Pm+1(κ) + [(m− 2j)(2j − 4κ2 −m) + µ2]Pm(κ)

+ 4κ2(m− 1 − 2j)Pm−1(κ) = 0 (16)

with the initial conditions P−1(κ) = 0 and P0(κ) = 1. Certain properties of the polynomial
Pm(κ) have been discussed in some recent works [12]. If κj is a root of the polynomial
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Pm+1(κ), the series (15) truncates at m � 2j + 1 and κj belongs to the spectrum of the
Rabi Hamiltonian. Therefore the solution given in (15) terminates at m = 2j and it becomes
a polynomial of degree 2j. The first four of them are given by

P1(κ) = µ2 (17a)

P2(κ) = µ2(4κ2 + µ2 − 1) (17b)

P3(κ) = µ2(32κ4 + 4(3µ2 − 8)κ2 + µ2(µ2 − 5) + 4) (17c)

P4(κ) = µ2(384κ6 + 16(11µ2 − 54)κ4 + 8(3µ4 − 29µ2 + 54)κ2 + µ2(µ2 − 7)2 − 36)

(17d)

for j = 0, 1/2, 1, 3/2, respectively. The components of the eigenfunctions are expressed as

ψ1(x) = N1 e−κ2x�(x) (18a)

ψ2(x) = N2 e−κ2x(2(j − κ2x)�(x)− x�′(x)) (18b)

whereN1 andN2 are normalization constants. It is obvious that the degrees of polynomials in
the expressions for ψ1(x) and ψ2(x) are 2j and 2j + 1, respectively. The polynomials given
in (17a)–(17c) are exactly the same results obtained by the method of Juddian isolated exact
solution [3, 10]. In the following section we discuss the results.

4. Results

The eigenfunctions can be obtained for a given j . As an example consider the j = 1/2 case.
The polynomial Pm(κ) appears as the coefficient in the wavefunction. The series terminate
when P2(κ) = 0. The zeros of the P2(κ) are given by

µ = 0 µ = ±
√

1 − 4κ2. (19)

Under the assumption µ �= 0 we obtain the exact solution of the Rabi Hamiltonian, and its
normalized eigenfunctions can be written as

ψ1(x) = (8 + 4µ2 + µ4) e−κ2x

2κ2µ4

(
1 +

4κ2

µ2
x

)
(20a)

ψ2(x) = (728 − 288µ2 − 19µ4 + 6µ6 + µ8) e−κ2x

32κ6
((1 + 2κ2)x − 1)(µ2 + 4κ2x) (20b)

with the eigenvalues

E = 1 − κ2. (21)

The condition for the normalizabilty of the functions is given by

Re(κ2) > 0 and −π
4
< arg(κ) <

π

4
. (22)

When j = 1 the roots of the polynomial P3(κ) can be obtained from (17c) and they read

µ = 0 µ =
√

5
2 − 6κ2 ±

√
16κ4 + 8κ2 + 9. (23)

The corresponding eigenfunctions are obtained by evaluating (20a) and (20b). The
unnormalized eigenfunctions for j = 1 are given by

ψ1(x) = e−κ2x

(
1 + (8κ2 + µ2 − 4)

(
x +

4κ2

µ2
x2

))

ψ2(x) = 2 + (14κ2 + 2µ2 − 9)x − [8κ2 + µ2 − 4] (24)

×
[(

1 + 2κ2 − 8κ2

µ2

)
x2 − 4κ2(1 + 2κ2)x3

µ2

]
.
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We have checked that the eigenfunctions are normalizable under the condition given
in (22).

Another interesting property of the Rabi Hamiltonian is its relation with the Pöschl–
Teller potential. When we transform the resulting differential equation (5) in the form of the
Schrödinger equation, the Pöschl–Teller potential naturally appears. In order to transform (5)
in the form of the Schrödinger equation we introduce the variable

x = −sinhαy (25)

and define the wavefunction

ψ(x) = e−κ2 cosh 2αy(coshαy)2j+ 1
2 (sinhαy)2j−

1
2 �(−sinhαy) (26)

to obtain the Schrödinger equation

− 1

2

d2ψ(x)

dx2
+ V (x)ψ(x) = EPTψ(x) (27)

where the potential and eigenvalues are respectively

V (x) = α2

8
(16j 2 − 1)cosech2 αy − α2

8
(4j + 1)(4j + 3)sech2 αy

+ 4α2κ2 sinh2 αy(1 + 2κ2 + 2κ2 sinh2 αy). (28)

EPT = 2α2(κ2(4j + 2) + µ2). (29)

The potential V (x) is the quasi exactly solvable Pöschle–Teller potential. When κ → 0 the
potential reduces to the exactly solvable Pöschle–Teller potential.

5. Conclusion

We have presented the quasi exact solution of the Rabi Hamiltonian which implies that
E ⊗ ε JT system also has a quasi exact solution. The existence of a quasi exact solution
does not of course allow for the general solution of the Rabi Hamiltonian. These solutions
have a direct practical importance for checking the precision of analytical and numerical
approximations. Another important result of this paper is that the eigenfunctions possess
explicit expressions. The method given here can be extended to other JT or multi-dimensional
atomic system problems. A further interesting implication of the method is the existence of
the relations between the QES Pöschl–Teller family potentials and the Rabi systems.
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